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Abstract 

 

This study investigates the usage of Military Flight Operations Quality Assurance 

(MFOQA) data as a means to obtain precise, aircraft-specific fuel loads.  Currently, 

USAF C-5M aircraft include a 4% “degrade” value in their fueling practices.  MFOQA 

data are analyzed in an attempt to refine this value.  Case study data are analyzed from a 

single C-5M.  A model is constructed using smoothing techniques which compare 

MFOQA actual observations to a baseline flight test model.  The resulting figures are 

applicable to fuel planning and fuel efficiency concepts.  Validation is presented through 

comparison with computerized flight planning software output.  Results from the case 

study analysis are presented within the framework of fleet-wide implementation and 

maintenance practices. 
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C-5M FUEL EFFICIENCY THROUGH MFOQA DATA ANALYSIS 

 
I.  Introduction 

The United States Air Force (USAF) operates an enormous fleet of aircraft.  

Within the USAF structure, Air Mobility Command (AMC) operates a fleet of large 

transport aircraft designed for heavy airlift missions.  These so-called “heavies” consume 

large amounts of aviation fuel.  Rising fuel costs combined with austere fiscal conditions 

are a significant challenge for AMC airlift operations.  Efforts to reduce AMC fuel 

consumption while maintaining mission effectiveness are of utmost concern for the 

command. 

Given that AMC consumed roughly 63% of all the fuel used in the entire USAF 

in 2011 (and therefore a large portion of the DoD fuel usage), ongoing efforts aimed at 

improving fuel efficiency resulted in many changes to policies and procedures at AMC 

(United States Department of Energy, 2012).  Fleet-wide fuel consumption and fuel 

efficiency is a complex problem which requires investigation into both the aircraft 

systems and the fleet’s operational procedures (Lee et al., 2004).  Instituting standardized 

fleet-wide policies regarding fuel usage is critical not only for cost savings but also for 

addressing environmental concerns (Lee, 2010).  Reiman (2014) notes the importance of 

a holistic enterprise approach to fuel efficiency.  The concept of fuel efficiency regarding 

a fleet of aircraft requires analysis of a dizzying array of factors:  fuel loading, cargo 

loading, routing, flight duration, etc.  Quantifying the various aspects contributing to fleet 

fuel efficiency is not an easy task.  Despite the challenges, there is a vast body of research 
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indicating that proper data analysis can contribute to improved fuel efficiency in a fleet of 

aircraft. 

This study focuses on a very specific aspect of fuel efficiency:  engine fuel 

consumption at cruise.  Properly quantifying the actual fuel burn of each individual 

engine permits flight planners to calculate a more precise fuel load for a specific aircraft 

on a specific mission.  It is a deceptively complex question:  How much fuel goes on an 

aircraft to complete a mission?  The answer to this question is critical.  Excess fuel leads 

to costly waste while a shortage could result in a costly diversion to an alternate 

destination.  An optimal “ramp” fuel load is critical since any excess fuel acts as “cargo”.  

In other words, any surplus fuel beyond that needed to safely complete the mission 

simply increases the gross weight of the aircraft and decreases the overall fuel efficiency 

for the flight.    AMC publications estimate a loss of 3% per hour per pound of excess 

fuel loaded.  For example:  1,500 lbs of fuel is burned during a 5 hour flight to 

accommodate an extra 10,000 lbs of fuel (AMC Pamphlet 11-3, 2007).  Reiman et al. 

(2011) suggest the use of a fueling accuracy metric to quantify this phenomenon and 

ensure no excess fuel is loaded.  Clearly, optimizing ramp fuel loads is critical to the 

efficient operation of an aircraft fleet.   

Inherent to the concept of an optimized ramp fuel load is an engine-specific (and 

therefore aircraft-specific) measurement of fuel burn.  The atmospheric and mechanical 

factors affecting fuel burn rate in jet engines are well researched and understood.  It is 

also well understood that aircraft engines deteriorate over time and associated variation in 

the fuel burn rates of individual engines can be drastic (Mehalic & Ziemianski, 1980).  
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Observing, estimating, quantifying, and updating fuel burn rates for individual engines 

can be both time consuming and labor intensive.  In practice, a blanket “fuel bias” or 

“fuel degrade” is often applied to account for deterioration and other factors (Srivastava 

et al., 2012).  These biases are incorporated into flight planning software to produce ramp 

fuel loads.  Indeed, AMC produces computer flight plans for their aircrews which add 

“fuel degrade” values to help ensure a proper amount of fuel is placed on the aircraft.  

Analysis of available datasets may contribute to refined degrade values.  Refined values 

would then contribute to more accurate fuel loading and more efficient fleet fuel usage. 

Flight Operations Quality Assurance (FOQA) data uses the quick access (QAR) 

data from aircraft flight recorders (the so-called “black box”).  FOQA records data on a 

wide array of flight parameters for a particular flight (Lowe, Pfleiderer, & Chidester, 

2012).  Airlines, through coordination with the Federal Aviation Administration (FAA), 

have analyzed FOQA data for decades.  The FAA-sponsored FOQA program’s stated 

goal is risk mitigation through the identification of unsafe trends in operation.  More 

recently, the usefulness of FOQA has been demonstrated for maintenance and health 

monitoring of the aircraft systems (Stolzer, 2002).  Insights gleaned from FOQA analysis 

is even beginning to gain a foothold amongst military aircrews as a training tool (Haas et 

al., 2008).   

Recognizing the safety and operational benefits of FOQA, the Office of the 

Secretary of Defense (OSD) issued a policy memo in 2005 directing a Military Flight 

Operations Quality Assurance (MFOQA) process implementation.  The USAF responded 

in kind with Air Force Policy Directive 90-13, “Military Flight Operations Quality 
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Assurance”.  Although gathered, analyzed, and maintained mostly for safety and 

readiness issues, AFPD 90-13 acknowledges the potential for “enhanced maintenance 

operations”.  Stolzer (2003) outlines how this is possible:   

Typically, modern digital aircraft capture and store between 200 and 500 

parameters per second…including gauge readings, switch positions, control wheel 

deflections, control positions, engine performance, hydraulic and electrical system 

status, and many others (p. 6).   

In other words, MFOQA records almost everything of interest going on with the aircraft.  

Although massive and unwieldy, the raw MFOQA represents a gold mine of aircraft data.  

Within the framework of fuel efficiency and aircraft-specific fuel burn rates, MFOQA 

data has great analysis potential. 

The USAF C-5M “Super Galaxy” is the latest modification to AMC’s C-5 cargo 

aircraft.  The C-5 is the largest aircraft in the USAF fleet and performs a wide array of 

airlift missions across the globe.  AMC records indicate the C-5 fleet flew well over 

30,000 hours in both fiscal year 2011 and 2012 (Air Mobility Command, 2014).  AMC’s 

Tanker/Airlift Control Center (TACC) at Scott Air Force Base produces most of the 

optimized flight plans for C-5M crews.  These flight plans include ramp fuel loads 

calculated with computer flight planning software in a process similar to most airline 

dispatch centers.  These flight plans are optimized for various input parameters:  sortie 

type, duration, cargo, weather, etc.  The flight planning software also plans the fuel load 

based on the technical order data provided to the USAF by Lockheed (the aerospace 
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corporation that builds the C-5M).  Currently, AMC flight planners add a 4% fuel 

degrade to the baseline fuel burn quantities when calculating the ramp fuel loads for the 

C-5M aircraft.  This 4% “pad” accounts for the variation in engine performance discussed 

earlier.  Proper examination of the available MFOQA could contribute to a more refined 

degrade quantity for an individual C-5M.   

This study determines if MFOQA gathered from the C-5M is a viable method of 

quantifying a highly accurate fuel degrade figure for an individual aircraft.  Recall that 

any extra fuel (even if added as part of the 4% “pad”) acts as cargo and decreases the 

overall fuel efficiency of a given sortie.  Consider, for instance, if the burn rate on a 

particular C-5M is more accurately described at 3.9% instead of 4% from the baseline 

technical order fuel burn rate.  On long haul missions, the C-5M carries roughly 160,000 

lbs of jet fuel for an 8 hour flight (Lockheed Martin, 2012).  In this case, the revised 

padding factor reduces the ramp fuel load by 160 lbs (one tenth of one percent).  This 

may seem to be a “drop in the bucket”, but consider that a C-5M easily flies several 

hundred such missions in a year (C-5 aircraft logged over 30,000 hours in FY 11) (Air 

Mobility Command, 2014).  Also, based on the “3% rule” outlined above, the C-5M 

burns another estimated 38.4 lbs of fuel to accommodate the 160 lbs of excess ramp fuel.  

AMC estimates a cost of $3.79 per gallon of fuel in FY12 (Air Mobility Command, 

2014).  A baseline density for military grade JP-8 fuel is 6.8 lbs per gallon (Lockheed 

Martin, 2012). With these figures, an estimated cost for 198.4 lbs of wasted fuel is 

roughly $110.  The carrying costs alone constitute approximately $21 of the $110.   
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The figures compound quickly for an entire fleet over a year of operations.  AMC 

databases show C-5 aircraft flew roughly 16,000 hours in FY 12.  Given this information, 

a mere one tenth of one percent  translates into roughly $200,000 in overall fuel costs.  

The carrying costs alone constitute $42,000.  The $42,000 could be considered an 

immediate cost savings, whereas the overall cost of $200,000 represents an inventory 

reallocation.  Consider also the cost of underestimating the degrade value.  Suppose an 

engine is over-consuming fuel at a rate of 5-6% degrade instead of the advertised 4%.  In 

this case, fuel conservation practices leading to razor thin fuel reserve margins could 

cause inadvertent and costly diversions and mission delays.  Accurately quantifying the 

fuel degrade figure for an individual aircraft has massive fuel and cost savings potential.  

Chapter I framed the overall scope of this thesis:  exploring the use of MFOQA to 

provide refined fuel degrade values for the C-5M aircraft.  Chapter II will provide further 

details on the project by outlining the applicable literature surrounding the subject. 
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II. Literature Review 

Chapter Overview 

As discussed in Chapter I, FOQA lends itself to in-depth data analysis due to the 

wealth of information contained in the data.  Research into the use of FOQA for aircraft 

engine diagnostics emerged in the last decade as a natural extension of the quality control 

and safety monitoring originally intended for the FOQA program.  A subset of this 

research surrounds fuel efficiency through FOQA analysis.    

To understand the current state of research in the realm of FOQA analysis on fuel 

efficiency, a host of online research databases, article repositories, conference 

proceedings, scholarly texts, and online search engines were examined.  Keywords in the 

searches included “FOQA”, “Fuel Efficiency”, “Fuel Consumption”, “Aircraft Fleet”, 

“Data Analysis”, “Data Mining”, and others.  Various combinations of the above 

keywords yielded many of the same sources suggesting these to be the more seminal 

works on the subject. 

Figure 1 is representative of the body of work surrounding FOQA and fuel 

efficiency.  The literature is broken down by subtopics which will be discussed in this 

chapter. 
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Figure 1 - Relevant Sources 
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Chang (2014) ● ● ●

Chu et al (2011) ● ● ●

Chu et al (2010) ● ● ●

Cleveland (1979) ●

Collins (1982) ●

Garbi (2007) ●
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Kalman (1960) ●

Kobayashi and Simon (2003) ● ●

Kobayashi and Simon (2004) ● ●
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Kwan et al (2014) ● ●
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Stolzer (2003) ● ● ● ●

Stolzer and Halford (2007) ● ● ● ● ●

Torenbeek (1997) ●

Woodbury and Srivastava (2012) ● ● ● ● ●

Related Works
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Fleet Health Monitoring 

Examining a complex concept such as fuel efficiency begins by examining the 

fleet as a whole.  The engineering effects within the fleet are the most straightforward.  

The fact that older engines are less fuel efficient is well known.  Quantifying such effects 

is vital to fleet fuel efficiency.  Serious research into the degradation of aircraft engines in 

terms of fuel efficiency has gone on for decades (Mehalic and Ziemanski, 1980).  As 

technology improved, researchers explored both the physical factors as well as the 

operational policies that influenced fuel burn rates in aircraft fleets (Babikan et al., 2002).  

These practices gave rise to the concept of fleet health monitoring.   

The main purpose of this thesis is utilizing FOQA to learn about the fuel 

consumption behavior of individual aircraft.  Specifically for the C-5M, the goal is to 

obtain precise, aircraft-specific fuel loads through the application of a precise fuel 

degrade figure.  This process can be seen as very specific form of fleet health monitoring.   

Monnin et al. (2011) underscore the importance of fleet-wide health monitoring.   They 

offer several models which demonstrate the synergistic effects arising from analysis of 

individual units within the operations framework of the entire fleet.  Kwan et al. (2014) 

provide a report for the international council on clean transportation by ranking major 

U.S. airlines using a “fuel efficiency” score gleaned from various fleet-wide policies and 

procedures implemented by the companies.  Aircraft-specific fuel loading (the tailored 

“ramp” loads described in Chapter I) is one of a myriad of considerations accounting for 

the overall fuel efficiency score.  Several studies examine FOQA and other data sources 

for fuel burn rates and other fleet health information.  For example, Chu et al. (2011) 
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describe adaptable and scalable models within the framework of statistical process 

control.  The intended use of these models is overall fleet health monitoring (not just fuel 

efficiency).  Stolzer (2003) and several others listed in Figure 1 focus specifically on fuel 

efficiency but their work is aimed at fleet-wide monitoring and implementation.  These 

trends in the research clearly suggest that FOQA analysis is rarely, if ever, conducted in a 

vacuum.  Researchers are considering the fleet-wide ramifications of the outcomes of 

their studies.       

FOQA/QAR Data Analysis 

FOQA fits nicely into the fleet health monitoring framework and works well for 

many different forms of analysis.  There are several reasons for this.  First, it is collected 

regularly per both FAA and USAF policy as described in Chapter I.  It is an existing data 

source that requires no additional resources to produce (Stolzer, 2003).  The raw FOQA 

is readily available; however, manipulating the raw FOQA does require effort and skill.  

Another reason FOQA is so useful is the massive amount of information it contains.  

FOQA captures the entire flight envelope and almost any imaginable relevant parameter.  

This makes FOQA a very adaptable data source.  For example, Chu et al. (2010) propose 

models for fleet-wide anomaly detection.  They build the models by focusing upon a 

limited set of variables examined on the cruise portion of sampled FOQA flights.  Stolzer 

(2003) and Stolzer and Halford (2007) also reduce the FOQA down to a very limited 

subset for their study on fuel consumption.  Lockheed Martin (the aerospace company 

that manufactures the C-5M), conducted a study aimed at quantifying the specific range 

(cruise fuel burn) of individual aircraft.  This study incorporated QAR-derived data 
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similar to FOQA (Lockheed Martin, 2014).  Li et al. (2011) utilize FOQA in a more 

traditional manner:  they employ cluster analysis to identify anomalous flight parameters 

(airspeed, pitch, etc).  Studies of this type abound.  Gorinevsky et al. (2012) provide 

similar analyses to Li et al. (2011) by using FOQA for anomaly detection.  Hailing from 

the NASA Ames Research Center, the authors propose various multivariate data 

reduction techniques to reduce terabytes of FOQA data to megabytes of scatter matrices.  

The implementation is through Hotelling T2 Statistics which are based upon empirical 

means and empirical covariances of the data.  This is done within the framework of 

anomaly detection, but can be adapted to regression parameters.  These studies 

demonstrate the wide applicability of FOQA to fleet health monitoring, but also illustrate 

the enormous and unwieldy nature of the data.  Oftentimes a large portion of the research 

project goes toward data reduction or filtering.  FOQA-derived research abounds despite 

its cumbersome nature.   

Although data reduction is often applied to FOQA databases, they are also often 

used in their entirety.  Srivastava et al. (2012) is another Ames Center study advocating 

the use of the entire dataset.   Several exotic methods (ensemble regressions, bootstrap 

and kriging models, neural nets, etc) are applied to produce fuel consumption models.  

The goal is again anomaly detection, but specifically anomalous fuel consumption.  This 

work was derived from a previous study (Srivastava, 2010) dealing with general linear 

models and Gaussian regression techniques to model anomalous fuel consumption.  

Woodbury and Srivastava (2012) summarize the previous works.  The journal article 

focuses more upon comparing the regression models and introduces a time element.  The 
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basic concepts involve regression models built upon limited FOQA inputs and analysis of 

time series relationships.  The approach is closely related to the methodology applied in 

Chapter III (although the underlying models differ).  Finally, Li (2010) presents a broad 

overview of techniques useful in managing the entire FOQA dataset.  He references work 

in the fields of machine learning and data mining.  This harkens back to the Stolzer and 

Halford (2007) study that echoes the same praise for such techniques.  Pulling FOQA (or 

any other data source) with the intention of identifying or estimating anomalous engine 

performance is only one possible application of this highly adaptable dataset.  Overall, 

there is a clear trend toward utilizing FOQA for anomaly detection.  There are precious 

few studies dealing with parameter estimation.  It is worthwhile to examine non-FOQA 

based studies that provide engine health parameter estimation. 

Engine Diagnostic Tools 

Data-driven estimates of engine health parameters often begin with models of the 

internal processes of the engines themselves.  For example, Kobayashi and Simon (2005) 

employ a nonlinear simulation of engine components for use in their analysis.  A similar 

approach is taken in their previous studies, although the analysis techniques themselves 

differ (Neural Networks and Genetic Algorithms for the 2005 study versus Kalman Filter 

techniques for the previous studies).  Simon (2008) offers a brief summary of algorithms 

proposed for engine health monitoring listing regressions, filtering, and smoothing 

techniques alongside other advanced techniques including neural networks, fuzzy logic, 

and genetic algorithms.  Indeed, various researchers have applied each of these methods 

within various frameworks to produce estimable parameters.  Taken as a whole, there is a 
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wide array of available techniques to estimate engine health parameters.  Kobayashi and 

Simon (2003), Kobayashi and Simon (2004), Simon (2008), Simon and Simon (2010), 

and Simon and Garg (2010) all build upon classical filtering techniques (Kalman, 1960) 

coupled with various associated optimization schemes within the filter to obtain results.  

Kobayashi and Simon (2005) utilize a neural network-genetic algorithm, and Chang 

(2014) approaches the problem with a fuzzy logic model.  Clearly, there are many 

applicable algorithms employed in the problem of data analysis of engine health.  For the 

scope of this thesis, it is prudent to examine a subset of engine health parameters – 

specifically fuel consumption.      

Fuel Consumption 

Similar to the studies on engine components in general, studies focusing 

specifically on fuel consumption also model the internal working of the engine.  One 

such model was derived by Collins (1982) based upon his work at MITRE.  He outlines 

the functional relationships between the classical aeronautical engineering equations and 

translates them into forms easily implemented for data analysis.  Future research such as 

Schilling’s (1997) neural network model relies on Collins (1982) equations.  An 

underlying engineering model driving the data analysis is a persistent theme in the 

research.  Fuel consumption models often employ such baseline models which are 

grounded in aeronautics.   

On the topic of estimating fuel consumption, Stolzer (2003) and Lockheed Martin 

(2014) both advocate examining the fuel burn during the cruise portion of the flight.  
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Garbi (2007) follows suit with a reference cruise model for a specific aircraft and analysis 

through a longitudinal motion model.  Torenbeek (1997) presents an excellent treatment 

of the concept of cruise flight in relation to range (this concept is detailed in Chapter III).  

Woodbury and Srivastava (2012) performed linear discriminant analysis on FOQA data 

and verified that vertical speed corresponded to a higher fuel flow, whereas cruise flight 

tended toward values with a central mean and normal distribution.  The reasoning for 

focusing upon cruise flight is simple:  the cruise portion is usually the longest and most 

stable phase of any flight.  The pitch, roll, and airspeed of the aircraft are intentionally 

close to constant.  Since many other factors contributing to fuel consumption are nearly 

constant, the cruise portion represents the most stable flight region to observe engine fuel 

consumption.  The concept of cruise flight data as a source for engine fuel consumption 

rounds out the research into the realm of FOQA analysis for fuel efficiency purposes.  

Chapter II closes with an examination of the techniques utilized to perform the research. 

Filtering, Smoothing, and Estimation 

A number of studies outlined in this chapter deal with advanced techniques 

(Artificial Neural Nets, Advanced Regression, Classification Trees, Cluster Analysis, 

etc).  These techniques are aimed at anomaly detection within a fleet either for fuel 

consumption specifically, or one or several engine parameters in general.  Although 

useful and effective, the goal of this study is neither classification nor anomaly detection 

(although anomalous fuel burn rates become evident in the analysis).  The goal of this 

study is to quantify fuel burn rates for specific aircraft.  In order to provide an estimate 

for fuel consumption, one should consider different algorithms.  Simon (2008) offers a 
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brief summary of algorithms proposed for engine health monitoring which includes 

weighted least squares, expert systems, Kalman filters, neural networks, fuzzy logic, and 

genetic algorithms.  The key difference between the data presented in this thesis and 

those examined by Simon (2008) and others is the existence of positive autocorrelation 

within the data.  Herein lays a key difference between smoothing and filtering techniques.  

Simon (2008) states smoothing has no benefit over filtering on datasets with constant 

bias.  Unfortunately, the datasets utilized in this thesis are massively autocorrelated which 

drives the analysis toward smoothing techniques to provide estimates.  

Staszewski et al. (2004) compose an entire text centered on concepts of signal 

processing for health monitoring.  Their work harkens back to the earlier discussion on 

fleet health monitoring and diagnostic tools.  Although centered more upon digital signals 

concerned with structural damage detection, the authors note the importance of 

considering noise reduction in a given dataset in a later chapter (pp. 165-173).  They 

frame the concept of noise reduction in terms of classical smoothing techniques such as 

Fourier transforms, Wiener filters, and various other techniques.  They also advocate the 

use of a simple moving average procedure computed using nearest neighbors.  

Additionally, they recognize that the classical techniques (Fourier transforms, etc.) can 

break down when the signal is non-stationary (time-dependent) (p. 171).  They suggest 

the use of a windowed Fourier transform over a span of data that can be considered 

stationary.  Based on the works of Staszewski et al. (2004), Simon (2008), and others, it 

is clear that the autocorrelated MFOQA fuel flow data provided for this study would 

require a smoothing technique capable of handling non-stationary, time-dependent data. 
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Cleveland (1979) introduced the concept of local regression on scatterplots, which 

he abbreviated LOESS.  Much like the concept of windowed Fourier transforms 

described by Staszewski et al. (2004), the LOESS procedure uses weighted least squares 

over a localized span (sometimes called bandwidth) of data.  The procedure is a 

nonparametric model which utilizes neighborhood weights about each point in the span 

(Martinez and Martinez, 2008, p. 520). The weights are derived from the bandwidth 

based upon a tricube function: 

  3 3(1 ) ;      0 1
( )

0;               otherwise

u u
W u

   
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

 
(1) 

 

These weights are applied to either a first order weighted least squares fit or a 

second order polynomial fit.  Higher order polynomials are possible, but rarely used 

(Cleveland, 1979).   Cleveland’s (1993) text defines the two parameters for LOESS:   = 

bandwidth (expressed as a percentage of the total number of data points ), and  = the 

order of the polynomial used in the Weighted Least Squares procedure (pp. 96-101).  The 

choice of   and   for the MFOQA fuel flow data is detailed in Chapter III.  

Furthermore, Cleveland (1994) advocates the use of the LOESS smoother on time series 

data (p. 154) noting the ability to fit trends while smoothing oscillations in time series 

data.   

In summary, this chapter explored the body of work surrounding the use of FOQA 

data for aircraft fuel efficiency analysis.  Chapter II also scoped the specific problem of 

quantifying an aircraft-specific fuel consumption figure.  Beginning within the 
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framework of fleet health monitoring and moving to the more specific topics of engine 

diagnostics and fuel consumption, the literature suggests different methods to harness 

FOQA data for fuel efficiency.  On the specific topic of aircraft-specific fuel burn 

estimation, research points toward smoothing techniques as a viable methodology.  With 

the relevant literature properly outlined, Chapter III moves on to the Methodology 

employed for the case study itself. 
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III:  Methodology 

Chapter I and Chapter II outlined the general philosophy behind utilizing 

MFOQA to realize gains in fuel efficiency and included an outline of the research in this 

arena.  This Chapter outlines the specific methodology utilized toward an overall goal of 

extracting C-5M fuel burn estimates from noisy MFOQA data. 

Case Study Data and Autocorrelation 

Previous chapters discussed the large and unwieldy nature of FOQA data.  

AMC’s MFOQA database is no exception.  Analysts at AMC Headquarters at Scott Air 

Force Base provided the author with thirty test missions extracted from two aircraft (29 

missions from one aircraft and one mission from a different aircraft).  AMC contracted 

out the task of reducing and cleansing the raw MFOQA for the individual flights down to 

manageable file sizes.  Serendipitously, the aircraft sensors which detect fuel flow 

readings record on one second intervals which matched the intervals on the cleansed files.  

The contracting team reduced down redundant and missing rows of data.  The resulting 

datasets contain records of aircraft parameters and external environmental readings at one 

sample per second.  Since the bulk of the provided data is from a single aircraft, the 

overall methodology approach is a case study on this single aircraft.  As will be 

demonstrated, the methodology is applicable to the entire C-5M fleet. 

Chapter II discussion noted cruise as most applicable flight regime for estimating 

fuel consumption.  A simple model for capturing fuel burn during cruise flight associates 

the Gross Weight and Airspeed of the aircraft to the Fuel Flow rate.  Details on this 

phenomenon will be discussed in later sections.  To establish an initial framework, 
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consider how Stolzer (2003) discovered both Airspeed and Gross Weight to be significant 

predictor variables on Fuel Flow rates for a FOQA-based study using ordinary least 

squares (OLS) regression techniques.  It is worth noting that Stozler’s (2003) dataset 

consisted of a single sample across several hundred FOQA datasets (missions), whereas 

this study utilizes many samples across only 30 FOQA datasets (missions).  Thus, 

Stolzer’s (2003) data is automatically independently distributed.  The same assumption 

cannot be made for the data in this study.  Nevertheless, running a simple linear 

regression still provides insights.  The Stolzer (2003) study was rigorous and included 

several iterations of stepwise regression and resulted in uncorrelated predictors with 

excellent properties (low variance inflation factors, etc).  From these results, it is 

reasonable to build an initial framework around a simple model which includes Stolzer’s 

(2003) significant predictor variables. 

OLS techniques are a natural starting point for data analysis.  Using Gross Weight 

and Airspeed as regressors and Fuel Flow as the response, multiple linear regressions 

were performed in MATLAB software’s “regstats” function on the associated columns of 

four specific MFOQA samples.  The four samples represent “stable cruise” segments 

culled from the 30 test missions.  They include the longest observed cruise (3.04 hours), 

the shortest observed cruise segment (0.84 hours), and two at-large samples near the 

mean cruise time of 1.5 hours.  Details on the construction of these stable cruise segments 

are provided in the appendix.  The resulting models exhibit low R-squared values, 

indications of lack of fit, and most importantly, significant values for the Durbin-Watson 

Statistic.  These are all clear indications of autocorrelation.  This is to be expected when 

examining MFOQA fuel flows over time.  As the aircraft burns fuel, it becomes lighter 
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thus reducing the overall Gross Weight.  Since the fuel burn is a function of the Gross 

Weight of the aircraft, an overall trend exists but is masked by True Airspeed deviations.  

These Airspeed deviations are manifestations of throttle excursions occurring as the 

autopilot/autothrottle system corrects for Altitude deviations (Lockheed Martin, 2014).  

Such throttle excursions introduce autocorrelated noise into the system.  The 

autocorrelated errors are evident through various statistical means.  Bowerman, et al. 

(2005) provides the definition of the Durbin-Watson statistic on p. 291: 
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Table 1 below lists the values for the Durbin-Watson Statistic on the sample MFOQA 

datasets clearly indicating significant positive autocorrelation.  It is worth noting that the 

p-values produced in Table 1 are normal approximations1, but the result is clear.  Notice 

the sample sizes are in seconds corresponding to the cruise times described in the 

previous paragraph. 

Table 1 - Results of the Durbin Watson Test 

 

                                                 
1 See http://www.mathworks.com/help/stats/linearmodel.dwtest.html for details 

Durbin-Watson Statistic Value p-value Sample Size

0.048662424 0 10955

0.051726953 0 3022

0.043579036 0 5051

0.044840468 0 5952
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The plots of the residuals of the four regressions shown in Figure 2 also exhibit the tell-

tale signs of autocorrelation.  They exhibit “sine wave” patterns as a clear violation of 

non-constant variance assumptions: 

 

Figure 2 - OLS Residual Plots 

Several of the studies discussed in Chapter II addressed the time series aspect of 

FOQA analysis.  Li et al. (2011) and Woodbury and Srivastava (2012), in particular, 

speak to the time element as they attempt to model the entire flight envelope for anomaly 

detection.  Their models are based upon cluster analysis and general linear 

models/Gaussian processes respectively.   This study relies more upon smoothing 

techniques associated with time series analysis.  Smoothing techniques are essential to 

this study in terms of understanding the actual fuel burn during cruise flight.  Before 
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examining the actual fuel burn and applicable smoothing techniques, a baseline fuel burn 

model must be established. 

Specific Range and the Baseline Engineering Model 

MFOQA provides a means of observing actual fuel consumption of C-5M 

engines.  Analysis of these figures is meaningless without a baseline model for 

comparison.  Luckily, the Technical Order specifications provide just such a baseline 

model (Lockheed Martin, 2012).  The baseline engineering model in the Lockheed 

Technical Order is based upon the concept of Specific Range.  Specific Range is an 

aeronautical equation used to describe fuel usage at cruise and is based upon the Breguet 

Range equation: 
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Here g  is the gravitational acceleration constant, V  is the aircraft speed, and the ratio of 

weights describes the tradeoff between fuel and payload (Lee et al., 2004).   The concept 

of Specific Range is employed in a number of ways to help quantify various fuel 

efficiency metrics (Reiman et al., 2011).  Torenbeek (1997) includes an in-depth 

discussion of the derivation of the Specific Range curves and the basis for Equations (4), 

(5), and (6) involving airspeed and altitude.  The Lockheed Martin (2014) study 

simplifies the Specific Range equations to estimable MFOQA parameters through the 

following derivations: 

Consider the Specific Range quantity in terms of air nautical miles per pound of fuel 

burned: 
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Dividing each term through by time, we have: 
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Which is re-written in terms of MFOQA observable terms as: 

 
KTASV

F
SR

F
  

(6) 

(1) 

where KTASV  is the True Airspeed of the aircraft, and FF is the fuel flow reading in lbs/hr.  

Both are observable MFOQA parameters.  Equation (6) offers a means to calculate a 

Specific Range value at a fixed Altitude and a given Gross Weight simply from observing 

the True Airspeed value (which is the Nautical Miles/hour value adjusted for altitude and 

temperature) (Lockheed Martin, 2014).  Since the True Airspeed is a function of altitude 

and temperature, the C-5M Technical Order presents flight-tested charts  providing plots 

of Specific Range values at a fixed altitude for a given Gross Weight and Mach Number 

(True Airspeed in terms of percentage of the speed of sound) (Lockheed Martin, 2011).  

Figure 3 is an example of a Specific Range chart similar to the one in the Technical 

Order.  Families of curves are printed for a fixed Altitude with respect to Gross Weight 

values at 10,000 pound intervals.  The curves plot Specific Range versus Airspeed in 

Mach.  Figure 3 displays the curves for five Gross Weights valued from 700,000 lbs to 

740,000 lbs.  Notice the non-linear relationship between Airspeed and Specific Range 
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which indicates an “optimal” airspeed is quantifiable for every combination of Gross 

Weight and Altitude. 

 

Figure 3 - Nominal Specific Range Curves 

Finally, notice that Equation (6) can be re-written in terms of Fuel Flow: 

 
KTASV

R
FF

S
  

(7) 

(1) 

Thus, for a given set of MFOQA observations (Altitude, Gross Weight, True Airspeed), it 

is possible to obtain a Technical Order “baseline” Fuel Flow measure.  This quantity can 

then be compared to the actual MFOQA Fuel Flow observation at a specific point in time.  

Integration over time of the observed cruise portion provides a total fuel burn estimate for 
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both the baseline (derived from Specific Range values based on MFOQA Altitude, Gross 

Weight, and Airspeed) and the observed (the actual MFOQA Fuel Flow reading). 

The MIF Project and Interpolating Specific Range Values 

The Technical Order charts such as the example in Figure 3 are useful for 

understanding the concept of Specific Range visually, but are not ideal for obtaining 

precise Specific Range values.  Simply plotting the inputs (Airspeed and Gross Weight) 

requires a keen eye and provides only rough estimates at best.  Also, the precise MFOQA 

readings naturally require interpolation between the curves since the Gross Weight values 

are only plotted at 10,000 lb increments.  Luckily, through the efforts of an ongoing fuel 

efficiency project titled “Mission Index Flying” (MIF), the charts themselves were 

converted over to tabulated values.  MIF is based upon industry best practices of 

quantifying the optimal airspeeds (i.e., flying airspeeds corresponding to the maximum 

on the Specific Range curve) discussed earlier and plotted on Figure 3 (Mirtich, 2011).  A 

MIF database of approximately 26,000 records which contains tabulated values for a 

Specific Range for a given Altitude, Mach speed, and Gross Weight was obtained.   The 

tabulated values are easily interpolated to provide precise Specific Range estimates.  

Table 2 below outlines the ranges on the MIF database: 

Table 2 - MIF Database Description 

 

Input MIF Database Ranges MIF Database Increments

Altitude 27,000'-45,000' 1000'
Mach Airspeed 0.39-0.825 0.005
Gross Weight 400,000 lbs - 840,000 lbs 10,000 lbs
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Using Equation (7) above, the baseline Specific Range values are easily converted into 

instantaneous Fuel Flows for comparison with the actual Fuel Flow observations.  An 

interpolating function can be used or the values can be rounded to the nearest entry 

among the 26,000 available combinations.  For this study, an interpolation scheme was 

implemented using MATLAB’s “scatteredInterpolant” function. 

Establishing Stable Cruise Criteria and Parsing Data 

The 30 test samples provided by AMC yielded 45 MFOQA cruise portions which 

fall into the ranges in Table 2.  Visual Basic (VBA) code was written to quickly parse an 

entire mission (one of the thirty samples) into usable cruise segments within the Altitude 

ranges of Table 2.  The logic for focusing upon stable cruise flight segments was outlined 

in Chapter II.  The VBA code limits “stable cruise” to the following criteria:  1) At least 

one hour of cruise (3600 records), 2) Of the one hour cruise, the first and last five 

minutes are discarded to allow for level-off from climbs and preclude capturing initial 

climb to the next altitude, 3) A steady altimeter reading (25’) to reduce noise.  Pseudo-

code is provided in Appendix A.  Precise Specific Range values for each record in a 

stable cruise sample arise from plugging in observed MFOQA Altitudes, Gross Weights, 

and Mach speeds.  The stable cruise segments also record the observed Fuel Flow during 

flight.  These data are used to calculate the actual fuel burn estimate for comparison to 

the baseline.   

Actual Fuel Burn Estimate and LOESS Smoothing 

This section returns to the concept of quantifying the specific fuel burn for a 

specific engine (which aggregates into an estimate for the fuel burn of the aircraft as a 
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whole).  With the autocorrelation detailed, stable cruise samples parsed, and a baseline 

fuel burn calculated, the actual fuel burn estimate can be established and compared to the 

baseline.  The result is a good estimation of the true fuel burn “degrade” of the engine.  

Implementation of the LOESS smoother upon noisy MFOQA fuel flow data is the 

method employed in this study. 

The section on autocorrelation and the introduction of the smoothing technique 

known as LOESS set the stage for the methodology involved in calculating the actual fuel 

burn estimate.   There are many techniques available to deal with autocorrelation.  These 

include the Cochrane-Orcutt Method, ARMA, ARIMA, (Montgomery et al., 2012, p. 

482), the Batch Means method (Law, 2007, pp. 520-522), and others.  Each technique has 

advantages and drawbacks.    

The LOESS smoother described in Chapter II has some distinct advantages as 

outlined by Cleveland and Loader (1996).  First, although the method itself is 

nonparametric, it is easy to understand and interpret.  It is also an adaptable and flexible 

method that can deal with different distributional assumptions.  The use of a local model 

and the choice of bandwidth and polynomial order selection also contribute to the 

flexibility of the method.  According to Cleveland and Loader (1996), none of these 

aspects alone make the LOESS smoother a preferred choice over splines or other kernel 

methods.  Taken as whole, however, the adaptability and flexibility of the LOESS model 

make it an excellent choice for time series data (such as MFOQA fuel flows) which 

Cleveland (1993) describes as “functions that defy description by simple parametric 

functions” (p. 154).   
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The LOESS smoother does have a few drawbacks.  First, the nonparametric 

nature of the procedure precludes specification of a rigid structural relationship between 

the independent and dependent variables as is done with normal regression techniques.  

Since the goal of this study is estimation rather than a structural model, the nonparametric 

nature of the procedure is not overly concerning.  Second, the LOESS procedure itself is 

admittedly computationally intensive.  LOESS performs a weighted least squares 

regression for each point in the span.  In the past, this may have been a factor for large 

datasets, but modern computing power makes LOESS implementable on large datasets.  

Diagnostics such as “goodness of fit” for LOESS are difficult to quantify and interpret 

but some insight can be garnered from residual analysis (Jacoby, 2000).  Finally, the task 

of designating the LOESS parameters (and thus fine-tuning the amount of smoothing) is 

not trivial.  Even small changes to the parameters can drastically affect the estimates.  

Despite these drawbacks, LOESS is still an excellent choice for the MFOQA fuel flow 

estimation since it is specifically designed to deal with noisy data. 

LOESS Smoothing Parameters for C-5M MFOQA Fuel Flow 

Utilizing LOESS to produce the MFOQA fuel flow estimates is achievable, but 

requires careful attention to the specification of the LOESS parameters.  The choice of   

and   are important.  Cleveland and Loader (1996) describe the choice of   as a 

tradeoff between variance reduction and bias.  Higher values of   result in larger spans 

and a smoother curve.  For the MFOQA analysis, the goal is noise reduction and the 

preservation of the underlying trend in the fuel flow response.  Recall that the fuel flow 

responses decrease over time due to reduction in the Gross Weight of the aircraft.  This 
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phenomenon is “masked” by noisy autothrottle and Airspeed inputs which, in turn, distort 

estimates of actual fuel burn.  To counter this effect, LOESS is employed to smooth out 

the noise and provide a clearer estimate of actual fuel burn for comparison.  In a similar 

manner, LOESS smoothing on the True Airspeed value used in the baseline estimate 

reduces noise resulting in a smooth baseline curve. 

Cleveland (1993) describes LOESS parameter selection as an iterative procedure 

and encourages “educated first guesses” (p. 96).  For the smoothing parameter  , 

Cleveland offers a range of values from 0.25 to 1 as a heuristic.  With regards to the 45 

stable cruise segments, 75% are below two hours in duration (recall that the stable cruise 

criterion for duration was at least one hour) with the mean of all 45 near 1.5 hours.  This 

means that 0.25   equates to approximately 25 minutes on average.  For the aircraft 

weights observed in the 45 stable cruise segments, a quick approximation for fuel burn is 

roughly 20,000 lbs/hour (Lockheed Martin, 2012) meaning that the model is seeking to 

detect changes in fuel flow responses over a change in Gross Weight averaging 

approximately 5,000 lbs.  Both Cleveland and Loader (1996) and Simonoff (1996) view 

boundary regions as a major consideration in the choice of  .  Indeed, the nearest 

neighbors tricube weighting employed in LOESS treats points on the tails of the 

bandwidth differently than an interior point.  In terms of MFOQA, it is reasonable that a 

change of 5,000 lbs would register a measurable change in fuel flow responses.  Simonoff 

(1996) offers techniques based upon Kernel densities which may yield more “optimal” 

values of  .  He further explores the effects of autocorrelation on smoothing, noting that 

the existence of autocorrelation suggests the use of a higher value for  .   Efforts to fine-
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tune the smoothing parameter have merit, but for the reasons outlined above, 0.25   is 

a reasonable choice for this study.         

The choice of   (the degree of the polynomial used in the local regression) 

should attempt to model the underlying trend.  Cleveland (1996) notes that “gentle 

curvature” with no local maxima or minima would allow for a local linear fit (p. 98).  

Jacoby (2000) notes a linear fit is appropriate if a general monotonic pattern is discernible 

from the raw data.  For the MFOQA data, an argument can be made for both the linear 

and quadratic models ( 1   and 2   respectively).  The very fact that fuel burn can be 

estimated at roughly 20,000 lbs/hour seems to confirm a linear trend and plots of the raw 

data (seen in Figure 9) seem generally monotonic (although noisy).  It is worth 

considering, however, engineering models (such as Figure 3) which demonstrate 

decidedly nonlinear relationships over vast spans of aircraft weights.  Since LOESS 

smoothing with both linear and quadratic models is easily implemented in MATLAB, a 

simple solution is to run each method on a limited dataset and examine preliminary 

results to further justify the proper choice of .  

LOESS Residual Diagnostics  

At the beginning of the chapter, four stable cruise segments were utilized to 

demonstrate the autocorrelation present in the MFOQA fuel flow responses.  Recall that 

these data were the shortest duration, longest duration, and two at-large segments near the 

mean of 1.5 hours.  It is now clear that these segments were pulled from the larger set of 

45 stable cruise samples.  Along with demonstrating autocorrelation, these four segments 

are ideal for examining LOESS diagnostics. 
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Jacoby (2000) describes how a properly specified LOESS curve would account 

for any systematic dependencies in bivariate data, thus the residuals from the model 

should contain no discernible pattern.  Indeed, Cleveland (1993) espouses the use of 

residual analysis as a primary diagnostic for LOESS (pp. 103-104).  Jacoby’s (2000) 

definition of a LOESS residual: 

  ˆ( )i i ie y g x    (8) 
(1) 

follows the familiar definition used in ordinary regression.  With residual diagnostics, 

LOESS bridges a compromise between nonparametric and parametric modeling.  In 

particular, the use of residual dependency plots to check for non-constant variance, 

alongside Normal q-q plots to check for normality (Cleveland, 1993, pp. 103-109) are 

familiar diagnostics used to test the classic regression assumptions (Montgomery et al., 

2012, pp. 129-130).  Since it is impractical to examine 45 sets of residual plots, returning 

to the four segments used to describe the autocorrelation is adequate for LOESS residual 

analysis.  Residual analysis on this subset helps justify parameters choices and verify the 

methodology prior to analyzing the full dataset. 

Cleveland (1993, p. 103) and Jacoby (2000) both advocate the use of “residual 

dependence plots” as LOESS diagnostics.  The idea is to plot the residuals from the 

LOESS fit against the independent variable.  The logic is similar to classical regression in 

the sense that the LOESS smoother should capture the underlying trend between the 

independent and dependent variable leaving nothing but white noise in the residuals.  

With large datasets, it is appropriate to run the LOESS smoothing algorithm on the 
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residuals themselves with the expectation that the new smoothed curve is a line about a 

mean of zero (Jacoby, 2000).   

Figure 4 and Figure 5 show the residual dependence plots for the four sample 

cruise segments for both the linear and quadratic LOESS procedures: 

 

Figure 4 - Residual Dependency Plots for the Linear Fit 
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Figure 5 - Residual Dependency Plots for the Quadratic Fit 

Both sets of plots result in smoothed lines near zero, but with some oscillations.  These 

oscillations indicate that the autocorrelation is still present.  This is not quite as 

concerning for the nonparametric nature of LOESS, but it is worth noting that the 

quadratic model deals with the autocorrelation slightly better.  The overall trend toward a 

mean of zero is encouraging.  These plots also hint that the quadratic fit ( 2  ) may be 

preferred for this dataset. 
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A second LOESS diagnostic is the familiar Normal q-q plot (Cleveland, 1993, pp. 

108-109) which provides justification for the weighted least squares fit utilized within 

LOESS.   

Figure 6 and Figure 7 below display the Normal q-q plots for the linear and 

quadratic fits.  They are nearly identical.  The accompanying box plots show some 

outliers, but the sample sizes are large enough that the data is not unduly influenced.  For 

smaller datasets with potential outliers, a robust version of LOESS is available 

(Cleveland, 1993, pp. 110-116).  The robust LOESS procedure involves iterative re-

weighting of the least squares fit based on the Median Absolute Deviation of the 

residuals.  The robust version is not considered for this study. 

 

Figure 6 - Normal Quantile Plots for the Linear Fit 
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Figure 7 - Normal Quantile Plots for the Quadratic Fit 

Before moving on to the results of the full analysis presented in Chapter IV, it is 

worth noting that further LOESS diagnostics exist.  These involve techniques aimed at 

quantifying corollaries to some classic statistical techniques such as ANOVA tables, F-

values, 2R  values and the like.  This is accomplished through a variety of cross-

validation, bootstrapping techniques, and theory from Kernel densities.  For LOESS, 

classical statistical inference becomes somewhat dubious and difficult to interpret.  In the 

strictest sense, the LOESS smoother does not partition the sum of squares for error in a 

way that allows for the classical ANOVA assumptions to hold (Jacoby, 2000).  The 

interested reader should refer to Jacoby (2000) and Simonoff (1996) for a discussion on 

these diagnostics.  Certain problems may gain insight from these calculations, but little 
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value is added for this study.  The outcomes of the residual analysis presented above are 

sufficient to move forward. 

Comparison and Summary 

Figure 8 below summarizes the methodology presented in this Chapter.  The 

methodology itself is applicable to any FOQA dataset, and is tailored to the C-5M for this 

study.   

 

Figure 8 - Methodology Summary 

Raw MFOQA is parsed into stable cruise portions based upon the criteria outlined above.  

The goal is to key in on flight segments where the aircraft and the engines are at their 

most stable.  Once parsed, three MFOQA inputs (Gross Weight, Altitude, and Mach 

Airspeed) are used to compute the baseline fuel flow.  This baseline number is an 

interpolation using Specific Range culled from the MIF database.  In simple terms, this 

baseline represents “what the aircraft should’ve burned”.  LOESS smoothing on the True 
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Airspeed input reduces the noise in the baseline response.  Next, the recorded fuel flows 

are smoothed using the LOESS procedure to produce an estimate of actual fuel burn.  The 

final step is to integrate both of these curves and record the difference.  This difference 

divided by the baseline estimate is the degrade value.  For this study, all of the 

calculations are performed in MATLAB and are outlined in the pseudo-code in Appendix 

A.  A graphical example of the model output is presented in Figure 9 below: 



38 

 

Figure 9 - Smoothing Example 

In this example, the top plot shows LOESS smoothing against the raw MFOQA fuel flow 

responses for a single engine.  The middle plot shows the four smoothed MFOQA 

responses (one for each engine) against the smoothed baseline fuel burn.  The bottom plot 
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is the same as the middle plot but shown on the same y  scale as the top plot.  This 

demonstrates how the LOESS smoother reduces the noise in the data.  The smoothing 

technique is LOESS with 0.25   and 2  for the reasons discussed above.  The area 

between each smooth curve and the baseline curve represents the difference in fuel burn 

in pounds.  Expressing this difference as a percentage of the baseline produces the 

degrade number.  This degrade number is the overall goal of the study and is applicable 

for mission planning as discussed in Chapter I.  Results of the implementation of this 

methodology on the full dataset are presented in Chapter IV.
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IV.  Analysis and Results 

The first three chapters laid the groundwork for the fuel burn analysis specific to the C-

5M.  This analysis is of interest to AMC for the reasons outlined in Chapter I and is the focus of 

this chapter. 

Quantifying the fuel degrade value 

The methodology outlined Chapter III and summarized in Figure 8 was applied to 45 

stable cruise observations.  The model output is in the form of four degrade values (one value for 

each engine).  These numbers are then averaged providing the “tail-specific” fuel degrade for the 

entire aircraft.  This final number is an estimate of the fuel burn performance for the aircraft.  

The tail-specific degrade value can then be applied to flight planning which results in more 

accurate fueling procedures. 

For this study, 45 stable cruise segments were obtained.  Of the 45 stable cruise 

segments, 40 observations come from a single aircraft.  The remaining 5 observations are from a 

different C-5M and work to validate the procedure.  Two tables below were constructed from the 

results of the 45 cruise segments.  The first table provides summary statistics for the 40 

observations from the case-study aircraft (Aircraft #1) and the second table summarizes the 5 

observations from Aircraft #2.  The tables were constructed using Excel’s Data Analysis Add-In 

which provides concise summary statistics.   
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Table 3 - Summary statistics for Aircraft #1 (n=40) samples 

 

It is useful to examine the fuel degrade results for each individual engine.  Recall that the 

degrade percentages shown are the end product of the methodology presented in Chapter III.  

These figures are a ratio of the observed excess fuel burn (obtained from the smoothed MFOQA 

Fuel Flow reading) to the smoothed baseline fuel burn.  Referring back to Table 3, it is 

noticeable that engine #1 and engine #3 exhibit a higher burn rate than engines #2 or #4.  This 

comes to bear in the output.  The summary statistics include the half-width of the classic t  

confidence interval as described by Bowerman, et al. (2005) on p. 57: 
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For this data, Excel uses a 95% Confidence level and we have 40n  .  Of note, the intervals for 

engines #1 and #3 are [0.046 0.00322]  and [0.048 0.00409]  respectively.  This is a critical 

finding since the bounds on these intervals are above 4% providing statistical evidence that these 

engines are burning above the advertised 4% degrade.  The intervals for engines #2 and #4 are 

[0.0369 0.00335]  and [0.0366 0.00307]  respectively.  Engine #2’s bounds contain the 

Mean 0.0466 Mean 0.0369 Mean 0.0482 Mean 0.0366

Standard Error 0.0016 Standard Error 0.0017 Standard Error 0.0020 Standard Error 0.0015

Median 0.0455 Median 0.0350 Median 0.0467 Median 0.0352

Standard Deviation 0.0101 Standard Deviation 0.0106 Standard Deviation 0.0128 Standard Deviation 0.0096

Sample Variance 0.0001 Sample Variance 0.0001 Sample Variance 0.0002 Sample Variance 0.0001

Range 0.0436 Range 0.0453 Range 0.0587 Range 0.0404

Minimum 0.0293 Minimum 0.0203 Minimum 0.0245 Minimum 0.0218

Maximum 0.0729 Maximum 0.0656 Maximum 0.0832 Maximum 0.0622

Sum 1.8635 Sum 1.4753 Sum 1.9274 Sum 1.4651

Count 40.0000 Count 40.0000 Count 40.0000 Count 40.0000

Confidence(95.0%) 0.0032 Confidence(95.0%) 0.0034 Confidence(95.0%) 0.0041 Confidence(95.0%) 0.0031

Lower 0.0434 Lower 0.0335 Lower 0.0441 Lower 0.0336

Upper 0.0498 Upper 0.0403 Upper 0.0523 Upper 0.0397

Engine #1 Degrade Engine #2 Degrade Engine #3 Degrade Engine #4 Degrade

Confidence Interval Bounds
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advertised 4% value whereas Engine #4’s upper bound is very slightly below 4%.  The overall 

tail-specific degrade is the average of the 4 engine means is 0.04207 .  The figure is slightly 

above 4%, which indicates the case study aircraft is burning slightly more fuel than is accounted 

for in the 4% flight planning figure.  Critically, this provides evidence that the ramp fuel loads on 

this particular aircraft are slightly too low and run the risk of causing costly diverts. 

Similar analysis on Aircraft #2 data in Table 4 provides confidence intervals for all four 

engines on a limited sample size for 5n  .   

Table 4 - Summary statistics for Aircraft #2 (n=5) samples 

 

Notably, three out of four individual means are slightly below 4%; however, the limited sample 

size precludes much further insight.  Each of the individual engine confidence bounds contains 

4% with the exception of Engine #2.  Additional data would reveal whether or not this particular 

aircraft is burning fuel at a different rate than the case study aircraft.  A confidence interval 

below 4% would hint at the idea the aircraft is being loaded with too much fuel and that savings 

could be obtained by adjusting the degrade value.  The fact that the results of the case study and 

second C-5M data are similar is some evidence verifying the overall analysis. 

Mean 0.0332 Mean 0.0292 Mean 0.0407 Mean 0.0329

Standard Error 0.0030 Standard Error 0.0031 Standard Error 0.0031 Standard Error 0.0032

Median 0.0337 Median 0.0298 Median 0.0405 Median 0.0328

Standard Deviation 0.0066 Standard Deviation 0.0068 Standard Deviation 0.0070 Standard Deviation 0.0072

Sample Variance 0.0000 Sample Variance 0.0000 Sample Variance 0.0000 Sample Variance 0.0001

Range 0.0165 Range 0.0168 Range 0.0183 Range 0.0166

Minimum 0.0240 Minimum 0.0197 Minimum 0.0311 Minimum 0.0234

Maximum 0.0405 Maximum 0.0364 Maximum 0.0494 Maximum 0.0399

Sum 0.1660 Sum 0.1460 Sum 0.2035 Sum 0.1645

Count 5.0000 Count 5.0000 Count 5.0000 Count 5.0000

Confidence(95.0%) 0.0082 Confidence(95.0%) 0.0085 Confidence(95.0%) 0.0087 Confidence(95.0%) 0.0089

Lower 0.0250 Lower 0.0207 Lower 0.0320 Lower 0.0240

Upper 0.0414 Upper 0.0377 Upper 0.0494 Upper 0.0418

Confidence Interval Bounds

Engine #1 Degrade Engine #2 Degrade Engine #3 Degrade Engine #4 Degrade



43 

Computer Flight Plan Validation 

Providing face validity is important to any data-based study.  For AMC leadership to 

consider MFOQA data analysis for fuel efficiency, a validation framework should be established.  

A straightforward approach to validate the model presented in this study is through comparison 

with AMC’s own flight planning output.  AMC utilizes proprietary Computer Flight Planning 

Software (CFPS) to build aircrew Computerized Flight Plans (CFP).  The author obtained CFPs 

matching 12 of the 45 stable cruise segments.  Matching Gross Weight MFOQA readings to CFP 

estimates, the author analyzed matching sub-segments of the 12 cruise segments to the 

corresponding CFP waypoints.  The pseudo-code for this procedure is included in the Appendix.  

The resulting analysis compares the CFP planned fuel burn, the MFOQA-observed fuel burn, 

and the baseline model fuel burn for each sub-segment. 

Table 5 - CFP validation data 

 

Table 5 exhibits a variety of matching cruise segments observed at various Altitudes and 

Gross Weights.  The duration of the stable cruise segments was calculated from both the 

MFOQA-observed data and the corresponding CFP waypoints.  In certain cases, the planned 

duration (from the CFP) differs slightly from the MFOQA observed duration, but in no case is 

the difference drastic enough to cast doubt upon the match.  From equation (3) and equation (7) 

"Planned Burn" with CFP inputs "Actual Burn" FOQA Model "Should've Burn" FOQA Inputs

Altitude Takeoff Gross Weight CFP Fuel Burn (FLRM Differential) FOQA Fuel Burn (Model) Baseline Fuel Burn (Book Answer)

310 764K 25,800 25,495 24,358

310 764K 17,500 18,173 17,547

360 643K 16,200 16,545 15,791

360 647K 13,200 13,088 12,269

310 841K 14,800 15,052 14,351

330 841K 52,500 52,099 50,385

350 841K 22,200 21,639 20,282

350 711K 17,700 17,818 17,062

320 730K 17,500 17,245 16,543

330 721K 23,700 23,454 22,266

350 721K 19,100 18,595 18,078

330 749K 16,100 16,477 15,868
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described in Chapter III, the “baseline” fuel burns obtained from the electronic database will 

change based on Altitude and Gross Weight and the interpolated values are listed in the 

“Baseline Fuel Burn” column. 

The differences in the columns in Table 5 yield the individual degrade values for each of 

the 12 matching stable cruise segments.  These values are the difference between the data and the 

baseline expressed as a percentage of the baseline (the same as the output from the overall model 

described in Chapter III).  The means of these differences provides an estimate of the overall 

degrade using CFP calculations and the model output.  The 95% confidence intervals about these 

means are [4.64 1.72]  for the planned values and[4.61 0.76] for the model output.  It is 

remarkable that each of these values encompasses the advertised 4% degrade, but that the 

planned values exhibit quite a bit more variability than the model.  The overall result provides 

validity to the implementation of the methodology described in Chapter III since this 

methodology is completely independent of the computations involved with AMC’s CFP 

program.  A larger sample of matching cruise segments could provide further insight into how 

well the model performs as compared to AMC’s flight planning software. 
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V.  Conclusions and Recommendations 

Using MFOQA to Quantify Fuel Degrade 

The results presented in Chapter IV demonstrate the usefulness of MFOQA in 

terms of quantifying a fuel degrade figure for an individual C-5M.  Harnessing MFOQA 

required quite a bit of data cleansing, but not to the point that implementation on a wide 

scale is prohibitive.  There are a few reasons for this.  First off, there is only a very small 

subset of the MFOQA database needed for fuel consumption analysis.  The methodology 

employed in this study really only pulls four quantities from the larger dataset:  1) Fuel 

Flow (1 reading per engine), 2) Gross Weight, 3) Altitude, and 4) True Airspeed 

(interchangeable with Mach speed).  This relatively small subset of MFOQA was pulled 

for this study using contracted algorithms and VBA code.  The process can easily be 

replicated.   

The methodology summarized in Figure 8 is intended to provide a good estimate 

of the actual performance of the engine in terms of fuel consumption.  It utilizes various 

techniques to reduce noisy autothrottle excursions while attempting to preserve the 

underlying trend in fuel flow responses.  As outlined in Chapter II and Chapter III, there 

are many other mathematical and statistical techniques which could apply to quantifying 

MFOQA fuel flow.  The technique used to determine the fuel degrade value should be 

validated.  The precision and quantity of MFOQA data makes it a very reliable source for 

any number of techniques. 

The case study outlined in Chapter III and demonstrated in Chapter IV provides a 

framework for determining a tail-specific fuel degrade quantity for an individual C-5M.   
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For the reasons discussed in Chapter I, a precise fuel degrade figure can lead to improved 

mission planning and better overall fuel efficiency for an individual C-5M.  The 

individual fuel degrade figure coupled with aircraft-specific fuel planning can lead to 

better overall fleet fuel efficiency. 

Fleet Fuel Efficiency and Maintenance/Operations Implications 

AMC is operating the C-5M under the assumption that the engines are operating 

at a 4% degrade value.  The 4% value accounts for deterioration and other differences 

between the operating conditions and the flight test data provided in the original technical 

order.  This value translates into a “pad” factor added to the ramp fuel calculated to 

perform a mission.  Chapter IV results show the case study aircraft degrade at an average 

of 4.2% meaning the case study aircraft is likely being under-fueled.  As discussed in 

Chapter I, razor thin fuel loading procedures could lead to costly diverts if a degrade 

factor is undercut.  Conversely, Aircraft #2 samples are trending toward a number less 

than 4% meaning that this aircraft could be loading excess fuel and incurring unnecessary 

cost.  Chapter I discusses how over-fueling the aircraft wastes fuel and incurs added cost.  

Whatever the case, there is evidence that a blanket value of 4% for the entire C-5M fleet 

is most likely incorrect and wasting money and resources.  Examining each C-5M 

individually would lead to refined values for each aircraft and a possible overall increase 

in fleet-wide fuel efficiency. 

Although quantifying the fuel degrade number is useful for fuel planning, the 

drastic differences in the performance of the individual engines provide evidence that the 

engines themselves are consuming fuel at different rates.  The overall goal of this study is 
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not anomaly detection per se, and analysis of MFOQA alone cannot account for the 

variation in fuel burn.  This analysis simply presents the results as they are, namely, that a 

difference exists.  In other words, this MFOQA fuel study cannot state “why” a certain 

engine exhibits anomalous fuel consumption, but simply that it is occurring.  Many of the 

studies outlined in Chapter II harness FOQA for anomaly detection in a similar manner.  

Within the context of AMC operations, identifying anomalous fuel consumption in an 

engine is still very useful even if there is no upfront solution to the problem.  Simply 

identifying the problem is useful.  Utilizing MFOQA provides maintenance personnel a 

method of identifying “bad actors” within the fleet independent of the normal 

maintenance and inspection procedures.  Of course this also highlights the associated 

challenges of implementing such analysis fleet-wide.  For example, if an aircraft is sent 

off to Depot maintenance and the engines are fine-tuned (or even swapped) then the 

entire analysis must be re-run.  Logically, the degrade number before and after a major 

maintenance action would tend to differ.   

Finally, aircraft operations should include consideration of differing fuel degrade 

values.  For instance, aircraft exhibiting consumption above 4% could be relegated to 

missions of short duration and/or training missions.  This would mitigate the impact of 

the overconsumption.  Aircraft performing at or below the 4% threshold should be 

judiciously employed on long-haul missions to affect a lesser overall fuel burn.  Despite 

the inherent challenges with both the data and implementation of the analysis, there are 

substantial fleet-wide benefits to quantifying the tail-specific fuel degrade. 
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Future Work 

One of the drawbacks of this study was the limited scope of the case study.  

Harnessing data from a single aircraft alongside only five additional samples from a 

second aircraft severely limited the extent to which inferences could be drawn about the 

C-5M in general.  Clearly, the next step is to gather more MFOQA data on several 

different aircraft.  The methodology employed in this study could then be applied to 

determine how these aircraft are consuming fuel.  The confidence interval approach 

shown in Chapter IV is still valid and the question of interest is whether or not the CIs on 

the test aircraft’s engines contain the 4% value.   Departures from the 4% value (either 

above or below) would signal the need for a refined fuel “pad”.  Aircraft operating below 

4% should have their degrade factors lowered and ramp fuel loads reduced.  Aircraft 

operating above 4% should have their degrade factors raised and ramp fuel loads 

increased.  Degrade factors above 4% could also alert maintenance personnel to possible 

malfunctions.  After enough time that a large sample size is gathered, AMC may even 

reconsider the “baseline” 4% value itself.  If most aircraft are trending one direction or 

the other (either above or below 4%), then there would be evidence that the population 

fuel degrade value is something other than 4%. 

In terms of the methodology itself, the use of the LOESS smoother upon MFOQA 

fuel flow readings culled from stable cruise subsets is not the only procedure available.  

The use of various regression algorithms such as those utilized by Srivastava (2012) 

could apply.  Control functions such as Kalman or Weiner filters may also be useful in 

capturing the fuel flow readings while simultaneously reducing the autocorrelated noise.  

The various studies from Simon and others described in Chapter II offer a springboard for 
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the use of such techniques upon MFOQA.  Simulation techniques such as the Batched 

Means method described by Law (2007) are effective at reducing autocorrelation and 

could be effectively employed on the MFOQA fuel flow data.  Any or all of these 

avenues could be explored in future studies aimed at quantifying tail specific fuel degrade 

values. 

Recommendations for Action 

Based on the outcomes of this study, it is recommended that AMC explore 

methods of utilizing MFOQA to obtain tail-specific fuel degrade values for the C-5M.  

Much of the groundwork is outlined in this study and the Lockheed (2014) study already 

briefed to AMC.  The data is available and the cost savings potential is real.   

Summary 

This thesis outlined the use of MFOQA data to improve C-5M fuel efficiency.  

The first chapter explored the background of various issues surrounding the fueling and 

operation of aircraft fleets and outlined the cost savings potential of the project.  The 

dataset itself is described and the applicable research outlined in Chapter II.  Chapter III 

provides an in-depth discussion of the thesis methodology and the techniques used to 

translate MFOQA data into meaningful fuel degrade figures.  The results of this study are 

outlined in Chapter IV and demonstrate the usefulness of MFOQA in quantifying the fuel 

consumption behavior of AMC’s C-5M aircraft.  Although conducted as a case study, the 

results have fleet-wide implications for both fuel efficiency and maintenance operations.  

The analysis could be easily expanded to a greater number of aircraft which would yield 

further insights on the fuel consumption behavior of the fleet.   
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Appendix A:  Algorithms 

 
Algorithm 1 Estimate Fuel Degrade using MFOQA 

1:  Obtain MFOQA readings at 1 sample/sec 
2:  Parse MFOQA dataset into stable cruise segments 
3:  while 27,000’ < Alt  < 42,000’ and Alt±25’ do 
4: Record stable cruise segment if > 3600 records (1 hr) 
5: Trim first/last  5 min of cruise (300 records) to ensure level, stable flight 
6:  end while 
7:  Calculate baseline fuel burn 
8:  for all stable cruise segments do 
9: Interpolate Specific Range values using MFOQA inputs 

10: Convert each Specific Range value to an instantaneous Fuel Flow reading 
11: Integrate Fuel Flow readings over stable cruise flight time to obtain 

total baseline burn 
12:  end for 
13:  Calculate actual fuel burn 
14:  for all stable cruise segments do 
15: Smooth MFOQA-observed Fuel Flow to reduce  noise {this  study uses 

LOESS} 
16: Integrate Fuel Flow readings over stable cruise flight time to obtain 

total actual burn 
17:  end for 
18:  Calculate difference and percent degrade 
19:  for all stable cruise segments do 
20: Subtract baseline estimate from actual estimate to obtain 

"overconsumption" figure 
21: Divide overconsumption figure by baseline estimate to obtain 

"percent degrade" figure 
22:  end for 
23:  Aggregate output  from each engine and each cruise segment  to 

estimate aircraft overall degrade 
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Algorithm 2 Compare CFP and MFOQA-observed Fuel Burn 
1:  Match stable cruise segments to CFP waypoints 
2:  for all stable cruise segments do 
3: Match MFOQA Gross Weight to CFP Waypoint using ’FLRM’ 
4: Record first/last  CFP Waypoint corresponding to MFOQA Gross Weight 
5:  end for 
6:  for all matching cruise segments do 
7: Match Lat/Long  coordinates for each Waypoint in the span 
8: - CFP Waypoint coords in DD MM S format 
9: - MFOQA output in DD.nnnn format 

10: - Conversion: MM S/60 ≈ nnnn 
11: Calculate baseline fuel burn {Algorithm 1, steps 9-11} 
12: Calculate acutal fuel burn {Algorithm 1, steps 14-15} 
13:  end for 
14:  Compare outputs 
15:  - Model output for baseline and MFOQA-observed 
16:  - Difference in ’FLRM’  for CFP 
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Appendix B:  Quad Chart 
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